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We present results from the theoretical solution of a problem concerned with the propaga- 

tion of a two-dimensional turbulent jet from a linear source placed at the vertex of a wedge. 

A calculation of flow into the jet of ejeeted air and the change in the resulting static pressure 
leads to a new law for decay of the axial velocity Um ~ x -n, where the exponent n is a func- 
tion of the vertex angle of the wedge. 

We consider  the two--dimensional flow of a turbulent jet (Fig. 1) f rom a l inear source placed at  the 
ver tex  of a wedgeofha l f -angle  (Tr-T), where 7 is an a rb i t r a ry  angle, q~0 < T < v. In solving this problem 
we proceed  from the fact  that the velocity profi le u / u  m in the jet is s imi lar  with r e spec t  to the length, de-  
pending only on the p a r a m e t e r  ~ - y / b .  We seek a solution in the form b ~ x, u m ~ x -n. When the static 
p r e s s u r e  is assumed to be constant throughout the whole region of the flow (and, consequently,  when no a c -  
count is taken of the flow induced by the jet) the solution of this problem is wel l  known [1]; in par t icu lar ,  
it is known that n = 1 /2 .  We solve this problem,  assuming the static p r e s s u r e  to be var iable ,  and we de-  
te rmine  the value of the exponent in the power law descr ibing the decay of the axial velocity. 

The general solution for the induced flow outside the turbulent jet can be writ ten,  relat ive to a polar  
coordinate sys tem (see Fig. 1), in the following way [2]: 

v r = - -  Ar - ~  cos ( i -  n) (r - -  ~), 
(1) 

% := A r - "  s in  (1 - -  n) (q~ - -  7 ) .  

We isolate a closed contour,  enclosing a zone of intensive turbulent flow in the jet, as shown in Fig. 
1. By a known theorem,  the project ion onto the x-axis  of the total flow of momentum through a closed s u r -  
face is equal to zero [3]: 

[Pn + pv (vn) ]x d / =  O. (2) 

Here n is a unit vector  along the normal  to the contour (positive direct ion toward the inter ior  of the con-  
tour) ; v is the velocity vector ;  l is a distance along the contour.  For  the contour shown in Fig. 1 the ex-  
p ress ion  (2) may be wri t ten as  follows: 

b b 

0 o 

The express ion in the r ight-hand s ideof  Eq. (3) is evaluated for ~p = go, i .e. ,  on the boundary of the jet, and 
fhe subscr ipts  [ ]1 and [ ]2 mean that the pa r ame te r s  within the square brackets  a re  evaluated at the s e c -  
tions 1 and 2. 

It  is well known [4] that the p r e s s u r e  inside the turbulent region of the jet can be expressed in t e rms  

of the intensity of the t r ansve r se  pulsations 

P = P~=~, -- pal'. (4) 
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Fig. I. Schematic representation of the two-dimensional 
jet. 

In addition, when the term pu 2 is averaged in relation (3), an additional term arises, with a longitudinal 
pulsating velocity pW 2. 

From the condition of self-similar flow the magnitude of the pulsations can be represented in the 
form 

7 " - -  u -~' = U2m~ (U, (5) 

and the m e a n  ve loc i ty  in the longi tudinal  d i r ec t i on  is 

P -= uy~ (~). (6) 

The magn i tude  of  the p r e s s u r e  on the boundary  of  the jet  (for ~v = ~0) can  be obtained f r o m  the B e r n -  
oull i  integral 

P~=~. = P~ p (v~ + v~) 
�9 2 ' ( 7 )  

where the velocities v r and v~0 of flow into the jet may be determined for ~ = ~0 from the relations (i). 
Finally, the projection onto the x-axis of the velocity of flow of air into the jet, which enters into the re- 
lation (3), satisfies the obvious relation 

v~ = v~ c o s  q~o - -  o ~  sin %. ( 8 )  

The relations (i), (4)-(8) enable us to express all the parameters in Eq. (3) in terms of characteristics of 
the jet itself and to simplify the integrals appearing within the square brackets. If we transform Eq. (3) in 
this way and then let dr -~ 0, and then integrate the differential equation obtained through this limiting pro- 

cess, we obta in  

pA*rX-2, pA*rl-*n 
Klpu~b = C, --} 2 sin (Po + 2 (1 --2n) sin [(l--2n)(tpo - -  7) - -  7], (9) 

! I 

w h e r e  K 1 : ~ f 2 d ~ -  j" ~ad~. 
0 0 

F r o m  the flow c o n s e r v a t i o n  condi t ion  for  this con tour ,  we have 

b b 

 ud4-[ S  udy], = - poo r (10) 
0 0 

and f r o m  ana logous  t r a n s f o r m a t i o n s  we obtain  a second  r e l a t i o n  

K,pu,~b = Ce pArX-n sin ( I - -  n)(% - -  7), (11) 
1 - - n  

1 

w h e r e  K 2 = I f (~)d~.  Re la t ions  (9) and (11) fu rn i sh  a gene ra l  solut ion of the s ta ted  p r o b l e m .  Since we seek  
0 

a so lu t ion  in the f o r m  b ~, r and U m ~  r -n ,  then,  as  i t  is e a s y  to show, the in tegra t ion  cons tan t s  C 1 and C 2 
a r e  equal to z e r o .  F r o m  this ,  us ing  the r e l a t i ons  (9) and (11), we find the axia l  ve loc i ty  and the th ickness  

of  the je t :  

si~ [(I-2n) (% - v) - v ]  
Ar -~ K~ sinq%+ 1 - - 2 n  

ur~ ~- 2 K1 sin (I - -  n) (% - -  7) ' (12) 
l - - n  
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Fig.  2. Influence of the angle Y on 
the magnitude of the exponent n in 
the axial velocity decay law. 

sin (I - -  n) (% - -  V) ] 2 

2 K  I I - .  n . (13) 
b = r K~ sin [ (1--2n) (%-- V) --V ] 

sin ~o + l--2n 

In these relat ions the constants K l ~ 0.31, K 2 ..~ 0.45 de-  
pend on the form of the velocity profi le in the let, the values 
given here  for them being in accord  with the data f rom [1, 4]. 
The constant A is determined f rom the flow conditions {by the 
initial momentum of the jet). Before determining the value of 
the constants ~0 and n, we consider  some general proper t ies  of 
the relat ions (12) and (13). Assume that y ~  ~r, i .e. ,  that the 
jet flow or iginates ,  for example, f rom a wall (7 = 7r/2). Then 
the known solution with n = 1 / 2  (see [1]) does not sat isfy the 
formulas  (12) and (13). In fact, for 7 # ~r and n = 1 / 2 ,  a c c o r d -  
ing to the relat ions (12) and (13), u m ~ oo and b -~ 0 for a rb i t r a ry  

values of r ,  which physical ly does not make sense. Hence when we take variat ion of the static p r e s s u r e  in-  
to account,  we see that for T # ~ the exponent in the axial velocity decay law cannot be equal to 1 / 2 .  To 
find the numerical  value of n we make the fair ly crude assumption that 90 = const  ~ 12.5 ~ As a basis for 
this assumption we cite the experimental  data [1] supporting the fact  that the expansion angle of the sub-  
merged  jet and that of the jet propagating in the oncoming flow a re  identical. The flow of the jet f rom the 
body, shown in Fig. 1, changes gradually,  as the angle T changes from ~r to 90, f rom the flow of the sub-  
merged  jet to a jet in the oncoming flow, which is ejected by this jet [2]. If we make this assumption,  then 
b / r  = sin g0 = const,  and it then follows f rom Eq. (13) that 

sin [(I--2n)(%-- ~) - -  ~] 2K, [ S in ( l - -n ) (%- - , ) ]~  
- -  = ~ 7 sin %.  (14) 

1- -  2 n  Sin % K ~  I ~ n 

This is a t ranscendental  equation relat ing the exponent n and the wedge angle T. In solving it we use the 
following values: of the constants:  ~0 = 12.5~ 2Kl / s in  q~0Kl = 14.5. The resul ts  of the calculations for n(T) 
a r e  shown in Fig. 2. We r e m a r k  that for 30 ~ < T -- 180 ~ the value of n differs little f rom 1 / 2  and Eq. (14) 
can be simplified by expanding the function in a se r ies  in the small  pa rame te r  (1 -2n) ;  f rom formula (14) 
we then obtain 

- -  sin ~, ('15) 
1 ~ 2 n =  

58 sin g % - - 7  sin% 
2 

As we have a l ready remarked ,  it is evident f rom formula (15) and the data shown in Fig. 2 that the 
exponent n = 1 / 2  only when Y = v ,  and then when the angle Y dec reases  the magnitude of n increases ,  for 
example,  when 7 ~ 22.5 ~ the jet damping exponent n = 1, and as Y -~ g0, the value of n ~ ~o. This region 
of Y values is of no pract ica l  singificance, since for these values of Y the flow picture  assumed in the ca l -  
culations does not mater ia l ize .  In actual i ty,  when 7 ~ g0, we have the usual flow in a two-dimensional 

diffuser with n = 1. 

In concluding, we calculate formal ly  the excess momentum of the jet, assuming that the p r e s s u r e  
throughout the flow region is constant  (which is what is usually done in the theory of submerged jets [1]): 

we then obtain 

2 , A ~ r  I - ' ~  { sin [(1--2n)(~0- 7) - -  ~]] ~ 2 9 p A , r ~ _ , ~  sin % - - ~  
A I  ~ Kxpu.~b = r 2 sin ~o + " 1--2n 2 (1 6 )  

It is evident that this excess momentum for u ~ ~ is variable along the jet and that it dec reases  as the d i s -  
tance f rom the source  inc reases ,  and for  7 = v and n = 1 / 2  the value AI = const.  This resu l t  differs e s -  
sentially from the data given in [5], where  the author f i r s t  t r ied to take into account the aclditional momen-  
tum flowing into the jet. This difference is apparently due to the incor rec t  choice of the contour of in tegra-  
tion, which in [5] passes  through the singular point (source of the jet). 

For  r ~ 0 and n ~ 1 / 2  in relat ion (16) the excess momentum becomes infinite. This is associa ted 
with the singulari t ies a r i s ing  f rom the way the problem was formulated (the jet was represented  as a l inear 
source) ,  resul t ing in the fact that as  r --* 0 the velocity in the jet and the velocity induced in the neighboring 
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flow increases without bound, so that the pressure, in accord with the Bernoulli equation (7), may become 
negative. To avoid this drawback in the theory it is necessary to consider a jet of finite size at the initial 
section. This has the effect, finally, of changing somewhat the quantitative results obtained in this paper; 
it does not, however, change the qualitative result concerning the increase in the axial velocity decay ex- 
ponent n as the angle y decreases. 
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Um 
b 
r ,  ga 
7r--T 
x, y 

= y / b  
n 

v r ,  vq~ 
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f(~), ~(~) 
K1, K2 
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AI 

NOTATION 

is  the velocity;  
is the veloci ty  on jet  ax i s ;  
is  the half-width of jet;  
a r e  the po la r  coord ina tes ;  
is the ha l f -ang le  a t  wedge t ip;  
a r e  the C a r t e s i a n  coord ina tes ;  
is the similarity number; 
is the power exponent in the law Um ~ x-n; 
are the velocity components in polar set of coordinates r, qo; 
is the constant; 
is the pressure; 

is the density; 
are the similarity functions; 
are the constants; 
are the integration constants; 
is the excess  pulse  of  jet.  

ii 
2. 
3. 
4. 
5. 
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