PROPAGATION OF A TWO-DIMENSIONAL TURBULENT
JET FROM A LINEAR SOURCE PLACED AT THE VERTEX
OF A WEDGE

A. N. Sekundov UDC 533.601.1

We present results from the theoretical solution of a problem concerned with the propaga-
tion of a two-dimensional turbulent jet from a linear source placed at the vertex of a wedge.
A calculation of flow into the jet of ejected air and the change in the resulting static pressure
leads to a new law for decay of the axial velocity um ~ x™, where the exponent n is a func-
tion of the vertex angle of the wedge.

We consider the two-dimensional flow of a turbulent jet (Fig. 1) from a linear source placed at the
veriex of a wedge ofhalf-angle (1 —v), where ¥ is an arbitrary angle, ¢, < ¥ < 7. In solving this problem
we proceed from the fact that the velocity profile u/uy, in the jet is similar with respect to the length, de-
pending only on the parameter £ =y/b. We seek a solution in the form b ~ x, uy, ~ x™. When the static
pressure is assumed to be constant throughout the whole region of the flow (and, consequently, when no ac-
count is taken of the flow induced by the jet) the solution of this problem is well- known [1]; in particular,
it is known thatn=1/2, We solve this problem, assuming the static pressure to be variable, and we de-
termine the value of the exponent in the power law describing the decay of the axial velocity.

The general solution for the induced flow outside the turbulent jet can be written, relative to a polar
coordinate system (see Fig. 1), in the following way [2]:

v, = ~ Ar="cos (1 — 1) (@ — )
r ( 1)
0y = Ar=" sin (1 —n) (@ — 7).
We isolate a closed contour, enclosing a zone of intensive turbulent flow in the jet, as shown in Fig,
1. By a known theorem, the projection onto the x-axis of the total flow of momentum through a closed sur-
face is equal to zero [3]:

93 [Pn -+ pv (vn) ],C dl=0. (2)

Here n is a unit vector along the normal to the contour (positive direction toward the interior of the con-
tour); v is the velocity vector; [ is a distance along the contour. For the contour shown in Fig. 1 the ex~
pression (2) may be written as follows:

[ jb(P + put) dy], — | f [P + pu} dy) - = [P sin gy — pv,0gl,_, dr. (3)
0 [1]

The expression inthe right-hand side of Eq. (3) is evaluated for ¢ = ¢y, i.e., on the boundary of the jet, and
the subscripts [ }; and [ ], mean that the parameters within the square brackets are evaluated at the sec-

tions 1 and 2.

It is well known [4] that the pressure inside the turbulent region of the jet can be expressed in terms
of the intensity of the transverse pulsations

P =Py—y,—pV - 4)
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Fig. 1. Schematic representation of the two-dimensional
jet.

In addition, when the term pu? is averaged in relation (3), an additional term arises, with a longitudinal
pulsating velocity pu®.

From the condition of self-similar flow the magnitude of the pulsations can be represented in the
form

v —d" = unp(®), ()
and the mean velocity in the longitudinal direction is
u’ = u2f* ). (6)

The magnitude of the pressure on the boundary of the jet (for ¢ = @) can be obtained from the Bern-~
oulli integral

Pw=w=Pw"‘

2+ 2
Pt ™

where the velocities vy and v of flow into the jet may be determined for ¢ = ¢, from the relations (1).
Finally, the projection onto the x-axis of the velocity of flow of air into the jet, which enters into the re-
lation (3), satisfies the obvious relation

U, = U, COS (g — Up Sill @, (8)

The relations (1), (4)-(8) enable us to express all the parameters in Eq, (3) in terms of characteristics of
the jet itself and fo simplify the integrals appearing within the square brackets. If we transform Eq. (3) in
this way and then let dr — 0, and then integrate the differential equation obtained through this limiting pro-
cess, we obtain

pAri—m pAri—m
Kpu2b=C, + ———sing, + S(—3n) sin [(1—271)(‘;)0 —) — ‘Y], 9)

1 t
where K =j f2dg —5 odt. From the flow conservation condition for this contour, we have
[ [

b b

H' pua!y]2 — [ j pudy]l = — pUgdr (10)
b H

and from analogous transformations we obtain a second relation

—n

Ar? .
Kpttmh = Cy— £ sin (1~ n)(go — ), (11)

1
where K, = Sf(g)dg . Relations (9) and (11) furnish a general solution of the stated problem. Since we seek

a solution inothe form b ~ r and um ~ r’®, then, as it is easy to show, the integration constants C, and C,
are equal to zero. From this, using the relations (9) and (11), we find the axial velocity and the thickness
of the jet:

. sin [(1-—2n) (@ — ¥) —7]
A K T T
bn=—"5" . S —7) (@ —17) ’ 12)
1—n
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d ' [Sin(l—n)(%-—v) 2
: ber 2K, . l—n i
K3 singy + sin [ (1-—2n) (ge—7) —7 ] 43
960 |— o 1—2n
In these relations the constants K; ~ 0.31, K, ~ 0.45 de-
\ : pend on the form of the velocity profile in the jet, the values
a5 given here for them being in accord with the data from [1, 4].
‘ \ The constant A is determined from the flow conditions (by the
\. initial momentum of the jet). Before determining the value of
050 ~ the constants ¢, and n, we consider some general properties of
0 4“5 w 135’ 1 the relations (12) and (13). Assume that vy = 7, i.e., that the
Fig. 2. Influence of the angle ¥ on jet flow originates, for example, from a wall (¥ = 7/2). Then
the magnitude of the exponent n in the known solution with n = 1/2 (see [1]) does not satisfy the
the axial velocity decay law. formulas (12) and (13), In fact, for ¥ # 7 andn=1/2, accord-

ing to the relations (12) and (13), uy — « and b — 0 for arbitrary

values of r, which physically does not make sense. Hence when we take variation of the static pressure in-
to account, we see that for ¥ # r the exponent in the axial velocity decay law cannot be equal to 1/2. To
find the numerical value of n we make the fairly crude assumption that ¢, = const ~12.5°. As a basis for
this assumption we cite the experimental data [1] supporting the fact that the expansion angle of the sub-
merged jet and that of the jet propagating in the oncoming flow are identical. The flow of the jet from the
body, shown in Fig, 1, changes gradually, as the angle ¥ changes from r to ¢;, from the flow of the sub-
merged jet to a jet in the oncoming flow, which is ejected by this jet [2]. If we make this assumption, then
b/r =sin ¢, = const, and it then follows from Eq. (13) that

sin [(I—2n)@~v) —v] _ _2K, { sin(l—n) (@ — 1) ]2 "

= — 8in'Q,.
1—2n sin @oK3 I—n AP

This is a transcendental equation relating the exponent n and the wedge angle ¥. In solving it we use the
following values: of the constants: ¢, = 12,5°, 2K, /sin ¢jK} = 14.5. The results of the calculations for n(y)
are shown in Fig. 2, We remark that for 30° < ¥ = 180° the value of n differs little from 1/2 and Eq. (14)
can be simplified by expanding the function in a series in the small parameter (1—2n); from formula (14)
we then obtain

—siny ) (15)
58 sin® 91'22“—" — sing,

1—2n=

As we have already remarked, it is evident from formula (15) and the data shown in Fig, 2 that the
exponent n = 1/2 only when v = 7, and then when the angle ¥ decreases the magnitude of n increases, for
example, when ¥ ~ 22.5° the jet damping exponent n=1, and as ¥ — ¢;, the value of n — «, This region
of ¥ values is of no practical singificance, since for these values of ¥ the flow picture assumed in the cal-
culations does not materialize. In actuality, when ¥ = ¢,, we have the usual flow in a two-dimensional

diffusor withn =1,

In concluding, we calculate formally the excess momentum of the jet, assuming that the pressure
throughout the flow region is constant (which is what is usually done in the theory of submerged jets [1]):
we then obtain

—2n 1 — b — ) — —
Al = K,Puiz b= pAr {sin o + sin [(1 2n) (g — ) '\’]} ~ 29p 213 sin &2_1 . (16)

2 1—2n

It is evident that this excess momentum for v # 7 is variable along the jet and that it decreases as the dis-
tance from the source increases, and for ¥ = 7 and n=1/2 the value Al = const, This rgsult differs es-~
gentially from the data given in [5], where the author first tried to take into account the additional momen-
tum flowing into the jet. This difference is apparently due to the incorrect choice of the contour of integra~
tion, which in [5] passes through the singular point (source of the jet).

For r — 0 and n = 1/2 in relation (16) the excess momentum becomes infinite, This is associated
with the singularities arising from the way the problem was formulated (the jet was represented as a linear
source), resulting in the fact that as r — 0 the velocity in the jet and the velocity induced in the neighboring

646



flow increases without bound, so that the pressure, in accord with the Bernoulli equation (7), may become
negative. To avoid this drawback in the theory it is necessary to consider a jet of finite size at the initial
section. This has the effect, finally, of changing somewhat the quantitative results obtained in this paper;
it does not, however, change the qualitative result concerning the increase in the axial velocity decay ex-
ponent n as the angle v decreases.
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NOTATION

is the velocity;

is the velocity on jet axis;

is the half-width of jet;

are the polar coordinates;

is the half-angle at wedge tip;

are the Cartesian coordinates;

is the similarity number;

is the power exponent in the law upy ~ x
are the velocity components in polar set of coordinates r, ¢;
is the constant;

is the pressure;

is the density;

are the similarity functions;

are the constants;

are the integration constants;

is the excess pulse of jet.
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